Reconfigurable Compact Quad-port MIMO Antennas for sub-6 GHz Applications
DOI:
https://doi.org/10.59746/jfes.v2i1.58Keywords:
MIMO antennas, sub-6 GHz, Reconfigurable Antenna, stubs, Cognitive radioAbstract
This paper presents compact quad-port frequency reconfigurable multi-input multi-output (MIMO) antennas for 5 G applications that operate at sub-6 GHz. The proposed design provides more isolation (>13 dB) and pattern diversity using four orthogonal radiating elements. C-shaped metal is used to extend the antenna's radiating elements by inserting one positive intrinsic negative diode (PIN) in the metal. The C-shaped metal and matching stub achieve frequency reconfigurability with a consistent radiation pattern. The PIN diode's switching characteristics allow the frequency to be shifted between two communication bands. One mode (diode ON) covers 2.5 and 5 GHz, while the second mode (diode OFF) covers another dual band of 3.5 and 5.7 GHz. Substrate dimensions are only 50 x 50 x1.6 mm3, making the proposed design compact. Antenna peaks at a gain of 4.18 dB and radiation efficiencies of 80 and 94% in the four frequency bands. The antenna design is appropriate for multi-functional wireless systems and cognitive radio applications since it spans frequency bands below 6 GHz and can be reconfigurable between wide and narrow bands.
References
S. Haykin, “Cognitive radio: Brain-empowered wireless communications,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 2, pp. 201–220, Feb. 2005. DOI: https://doi.org/10.1109/JSAC.2004.839380
J. Mitola, “Cognitive radio architecture evolution,” Proceedings of the IEEE, vol. 97, no. 4, pp. 626–641, 2009. DOI: https://doi.org/10.1109/JPROC.2009.2013012
F. Alsubaei, A. Abuhussein, and S. Shiva, “An Overview of Enabling Technologies for the Internet of Things,” Internet of Things A to Z, pp. 77–112, May 2018. DOI: https://doi.org/10.1002/9781119456735.ch3
K. Kanwal, G. A. Safdar, M. Ur-Rehman, and X. Yang, “Energy Management in LTE Networks,” IEEE Access, vol. 5, pp. 4264–4284, 2017. DOI: https://doi.org/10.1109/ACCESS.2017.2688584
D. J. Lee, S. J. Lee, S. T. Khang, and J. W. Yu, “Extensible compact 8-port MIMO antenna with pattern gain,” Microwave and Optical Technology Letters, vol. 59, no. 2, pp. 236–240, Feb. 2017. DOI: https://doi.org/10.1002/mop.30268
J. Y. Deng, J. Yao, D. Q. Sun, and L. X. Guo, “Ten-element MIMO antenna for 5G terminals,” Microwave and Optical Technology Letters, vol. 60, no. 12, pp. 3045–3049, Dec. 2018. DOI: https://doi.org/10.1002/mop.31404
M. Abdullah, Q. Li, W. Xue, G. Peng, Y. He, and X. Chen, “Isolation enhancement of MIMO antennas using shorting pins,” vol. 33, no. 10, pp. 1249–1263, Jul. 2019. DOI: https://doi.org/10.1080/09205071.2019.1606738
N. O. Parchin et al., “Mobile-phone antenna array with diamond-ring slot elements for 5G massive MIMO systems,” Electronics (Switzerland), vol. 8, no. 5, May 2019. DOI: https://doi.org/10.3390/electronics8050521
G. J. Foschini and M. J. Gans, “On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas,” Wireless Personal Communications 1998 6:3, vol. 6, no. 3, pp. 311–335, 1998. DOI: https://doi.org/10.1023/A:1008889222784
M. Johnny and M. R. Aref, “Blind interference alignment for the K-User SISO interference channel using reconfigurable antennas,” IEEE Communications Letters, vol. 22, no. 5, pp. 1046–1049, May 2018. DOI: https://doi.org/10.1109/LCOMM.2018.2817226
M. M. Hassan et al., “A novel UWB MIMO antenna array with band notch characteristics using parasitic decoupler,” Journal of Electromagnetic Waves and Applications, vol. 34, no. 9, pp. 1225–1238, Jun. 2020. DOI: https://doi.org/10.1080/09205071.2019.1682063
R. G. Vaughan and J. B. Andersen, “Antenna diversity in mobile communications,” IEEE Transactions on Vehicular Technology, vol. 36, no. 4, pp. 149–172, 1987. DOI: https://doi.org/10.1109/T-VT.1987.24115
R. Hussain, M. S. Sharawi, and A. Shamim, “4-Element concentric pentagonal slot-line-based ultra-wide tuning frequency reconfigurable MIMO antenna system,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 8, pp. 4282–4287, Aug. 2018. DOI: https://doi.org/10.1109/TAP.2018.2839970
R. Hussain, A. Ghalib, and M. S. Sharawi, “Annular slot-based miniaturized frequency-agile MIMO antenna system,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2489–2492, Jul. 2017. DOI: https://doi.org/10.1109/LAWP.2017.2726058
R. Hussain, M. S. Sharawi, and A. Shamim, “An Integrated Four-Element Slot-Based MIMO and a UWB Sensing Antenna System for CR Platforms,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 2, pp. 978–983, Feb. 2018. DOI: https://doi.org/10.1109/TAP.2017.2781220
J. H. Lim, Z. J. Jin, C. W. Song, and T. Y. Yun, “Simultaneous frequency and isolation reconfigurable MIMO PIFA using PIN diodes,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 12, pp. 5939–5946, 2012. DOI: https://doi.org/10.1109/TAP.2012.2211552
Y. Li, C. Y. D. Sim, Y. Luo, and G. Yang, “Multiband 10-Antenna Array for Sub-6 GHz MIMO Applications in 5-G Smartphones,” IEEE Access, vol. 6, pp. 28041–28053, May 2018. DOI: https://doi.org/10.1109/ACCESS.2018.2838337
Y. Li, C. Y. D. Sim, Y. Luo, and G. Yang, “High-Isolation 3.5 GHz Eight-Antenna MIMO Array Using Balanced Open-Slot Antenna Element for 5G Smartphones,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 6, pp. 3820–3830, Jun. 2019. DOI: https://doi.org/10.1109/TAP.2019.2902751
N. O. Parchin et al., “Eight-Element Dual-Polarized MIMO Slot Antenna System for 5G Smartphone Applications,” IEEE Access, vol. 7, pp. 15612–15622, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2893112
Y. Li, C. Y. D. Sim, Y. Luo, and G. Yang, “12-Port 5G Massive MIMO Antenna Array in Sub-6GHz Mobile Handset for LTE Bands 42/43/46 Applications,” IEEE Access, vol. 6, pp. 344–354, Oct. 2017. DOI: https://doi.org/10.1109/ACCESS.2017.2763161
Y. L. Ban, C. Li, C. Y. D. Sim, G. Wu, and K. L. Wong, “4G/5G Multiple Antennas for Future Multi-Mode Smartphone Applications,” IEEE Access, vol. 4, pp. 2981–2988, 2016. DOI: https://doi.org/10.1109/ACCESS.2016.2582786
G. Li, H. Zhai, Z. Ma, C. Liang, R. Yu, and S. Liu, “Isolation-improved dual-band MIMO antenna array for LTE/WiMAX mobile terminals,” IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1128–1131, 2014. DOI: https://doi.org/10.1109/LAWP.2014.2330065
Y. Liu, S. Wang, N. Li, J. B. Wang, and J. Zhao, “A compact dual-band dual-polarized antenna with filtering structures for sub-6 GHz base station applications,” IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 10, pp. 1764–1768, Oct. 2018. DOI: https://doi.org/10.1109/LAWP.2018.2864604
W. W. Lee and B. Jang, “A Tunable MIMO Antenna with Dual-Port Structure for Mobile Phones,” IEEE Access, vol. 7, pp. 34113–34120, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2904051
G. Jin, C. Deng, J. Yang, Y. Xu, and S. Liao, “A new differentially-fed frequency reconfigurable antenna for WLAN and sub-6GHz 5G applications,” IEEE Access, vol. 7, pp. 56539–56546, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2901760
Q. Chen et al., “Single ring slot-based antennas for metal-rimmed 4G/5G smartphones,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 3, pp. 1476–1487, Mar. 2019. DOI: https://doi.org/10.1109/TAP.2018.2883686
S. Ullah, I. Ahmad, Y. Raheem, S. Ullah, T. Ahmad, and U. Habib, “Hexagonal shaped CPW Feed based Frequency Reconfigurable Antenna for WLAN and Sub-6 GHz 5G applications,” 2020 International Conference on Emerging Trends in Smart Technologies, ICETST 2020, Mar. 2020. DOI: https://doi.org/10.1109/ICETST49965.2020.9080688
M. J. Farhan, and A. K. Jassim, “Design and Analysis a Frequency Reconfigurable Octagonal Ring-Shaped Quad-Port Dual-Band Antenna Based on a Varactor Diode,” Progress In Electromagnetics Research C, vol. 116, pp. 235–248, 2021. DOI: https://doi.org/10.2528/PIERC21091705