Natural fibers and their applications: A review
DOI:
https://doi.org/10.59746/jfes.v1i1.13Keywords:
Applications, Chemical treatments, Eco-friendliness, Natural fibersAbstract
Natural fibers are playing a major role in so many applications such as biomedical
applications, aerospace Industry, structural applications, and automotive. This review aims to
provide an overview of technological process (chemical treatment), availability, and the most
prominent applications of natural fibers that made them preferable to be employed in these
applications.
References
Peças, P.; Carvalho, H.; Salman, H.; Leite, M, 2018.Natural Fiber Composites and Their Applications: A Review. J. Compos. Sci, 2, 66. https://doi.org/10.3390/jcs2040066. DOI: https://doi.org/10.3390/jcs2040066
Sadeq, N.S., Mohammadsalih, Z.G., & Mohammed, R.H. (2020). Effect of grain size on the structure and properties of coir epoxy composites. SN Applied Sciences, 2, 1-9. DOI: https://doi.org/10.1007/s42452-020-2991-x
Camargo, M. M., Adefrs Taye, E., Roether, J. A., Tilahun Redda, D., & Boccaccini, A. R. (2020). A Review on Natural Fiber-Reinforced Geopolymer and Cement-Based Composites. Materials (Basel, Switzerland), 13(20), 4603. https://doi.org/10.3390/ma13204603 DOI: https://doi.org/10.3390/ma13204603
Mulinari, D.R.a, Baptista, C.A.R.P.b, Souza, J. V. C.a, Voorwald, H.J.C. (2011) Mechanical Properties of Coconut Fibers Reinforced Polymer Composites. Procedia Engineering 10, 2074–2079. DOI: https://doi.org/10.1016/j.proeng.2011.04.343
Bushra Rashid Mohammed, Zulkiflle Leman, Mohammad Jawaid, Mariyam Jameelah Ghazali, Mohamad Ridzwan Ishak (2017). Dynamic Mechanical Analysis of Treated and Untreated Sugar Palm Fibre-based Phenolic Composites.. International journal of precision engineering and manufacturing vol.17, No. 8, pp. 1001-1008 . DOI: https://doi.org/10.15376/biores.12.2.3448-3462
Ramengmawii Siakeng, Mohammad Jawaid, Hidayah Ariffin, Mohd Sapuan Salit. (2018).Effects of Surface Treatments on Tensile, Thermal and Fiber-matrix Bond Strength of Coir and Pineapple Leaf Fibres with Poly Lactic Acid. Journal of Bionic Engineering. 15, 1035-1046. DOI: https://doi.org/10.1007/s42235-018-0091-z
Sood M., Dwivedi G vedi. (2018). Effect of fibre treatment on flexural properties of natural fibre reinforced composites: A review. DOI: https://doi.org/10.1016/j.ejpe.2017.11.005
Egyptian Journal of Petroleum, 27 (4), pp. 775-783
Kabir M.M., Wang H., Lau K.T., Cardona F. (2012).Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43 (7), pp. 2883-2892.
Athijayamani, A., Thiruchitrambalam, Mani, Vairavan Manikandan, Pazhanivel, B., (2010).Mechanical properties of natural fibers reinforced polyester hybrid composite. International Journal of Plastics Technology 14(1):104-116 DOI: https://doi.org/10.1007/s12588-009-0016-0
Tamanna, T.A., Belal, S.A., Shibly, M.A.H. et al. (2021) .Characterization of a new natural fiber extracted from Corypha taliera fruit. Sci Rep 11, 7622). https://doi.org/10.1038/s41598-021-87128-8 DOI: https://doi.org/10.1038/s41598-021-87128-8
Jyoti Prakash Dhal, S. C. Mishra, (2013).Processing and Properties of Natural Fiber-Reinforced Polymer Composite, Journal of Materials, vol. 2013, 297213, 6 pages, https://doi.org/10.1155/2013/297213 DOI: https://doi.org/10.1155/2013/297213
Layth Mohammed, M. N. M. Ansari, Grace Pua, Mohammad Jawaid, M. Saiful Islam,(2015). A Review on Natural Fiber Reinforced Polymer Composite and Its Applications, International Journal of Polymer Science, published January
.Karim MRA, Tahir D, Haq EU, Hussain A, Malik MS,(2021). Natural fibres as promising environmental-friendly reinforcements for polymer composites. Polymers and Polymer Composites. May:277-300. doi:10.1177/0967391120913723 DOI: https://doi.org/10.1177/0967391120913723
Hamidon, M. H., Sultan, M. T. H., Ariffin, A. H., and Shah, A. U. M. (2019). Effects of fibre treatment on mechanical properties of kenaf fibre reinforced composites: a review. J. Mater. Res. Technol. 8, 3327–3337. doi: 10.1016/j.jmrt.2019.04.012
Saba, N., Paridah, M. T., and Jawaid, M. (2015). Mechanical properties of kenaf fibre reinforced polymer composite: a review. Constr. Build. Mater. 76, 87–96. doi: 10.1016/j.conbuildmat.2014.11.043 DOI: https://doi.org/10.1016/j.conbuildmat.2014.11.043
Hamidon, M. H., Sultan, M. T. H., Ariffin, A. H., and Shah, A. U. M. (2019). Effects of fibre treatment on mechanical properties of kenaf fibre reinforced composites: a review. J. Mater. Res. Technol. 8, 3327–3337. doi: 10.1016/j.jmrt.2019.04.012 DOI: https://doi.org/10.1016/j.jmrt.2019.04.012
Li, Z., Wang, X., and Wang, L. (2006). Properties of hemp fibre reinforced concrete composites. Compos. Part A Appl. Sci. Manuf. 37,497–505. doi:10.1016/j.compositesa.2005.01.032 DOI: https://doi.org/10.1016/j.compositesa.2005.01.032
Khan, J. A., and Khan, M. A. (2014). The use of jute fibers as reinforcements in composites, in Biofiber Reinforcements in Composite Materials, eds O. Faruk and M. Sain (Woodhead Publishing),3–34. doi:10.1533/9781782421276.1.3 DOI: https://doi.org/10.1533/9781782421276.1.3
Das, S. (2017). Mechanical properties of waste paper/jute fabric reinforced polyester resin matrix hybrid composites. Carbohydr. Polym.172,60–67. doi:10.1016/j.carbpol.2017.05.036 DOI: https://doi.org/10.1016/j.carbpol.2017.05.036
Rahman, M. S. (2010). “Jute-a versatile natural fibre. Cultivation, extraction and processing,” in Industrial Applications of Natural Fibres Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications, ed J. Müssig (Wiley), 135–161. doi: 10.1002/9780470660324.ch6 DOI: https://doi.org/10.1002/9780470660324.ch6
Ruan, P., Du, J., Gariepy, Y., and Raghavan, V. (2015). Characterization of radio frequency assisted water retting and flax fibers obtained. Ind. Crops Prod. 69, 228–237. doi: 10.1016/j.indcrop.2015.02.009 DOI: https://doi.org/10.1016/j.indcrop.2015.02.009
Bourmaud, A., Siniscalco, D., Foucat, L., Goudenhooft, C., Falourd, X., Pontoire, B., et al. (2019). Evolution of flax cell wall ultrastructure and mechanical properties during the retting step. Carbohydr. Polym. 206, 48–56. doi: 10.1016/j.carbpol.2018.10.065 DOI: https://doi.org/10.1016/j.carbpol.2018.10.065
Van de Weyenberg, I., Ivens, J., De Coster, A., Kino, B., Baetens, E., and Verpoest, I. (2003). Influence of processing and chemical treatment of flax fibres on their composites. Compos. Sci. Technol. 63, 1241–1246. doi: 10.1016/S0266-3538(03)00093-9
Nam, S., and Netravali, A. N. (2006). Green composites. I. Physical properties of ramie fibers for environment-friendly green composites. Fibers Polym. 7, 372–379. doi: 10.1007/BF02875769 DOI: https://doi.org/10.1007/BF02875769
Rehman, M., Gang, D., Liu, Q., Chen, Y., Wang, B., Peng, D., et al. (2019). Ramie, a multipurpose crop: potential applications, constraints and improvement strategies. Ind. Crops Prod. 137, 300–307. doi: 10.1016/j.indcrop.2019.05.029 DOI: https://doi.org/10.1016/j.indcrop.2019.05.029
Sen, T., and Jagannatha Reddy, H. N. (2011b). Various industrial applications of hemp, kinaf, flax and ramie natural fibres. Int. J. Innov. Manag. Technol. 2.
Bunsell, A. R. (ed.). (2018). “Introduction to the science of fibers,” in Handbook of Properties of Textile and Technical Fibres (Woodhead Publishing), 1–20. doi: 10.1016/B978-0-08-101272-7.00001-8 DOI: https://doi.org/10.1016/B978-0-08-101272-7.00001-8
Lanzilao, G., Goswami, P., and Blackburn, R. S. (2016). Study of the morphological characteristics and physical properties of Himalayan giant nettle (Girardinia diversifolia L.) fibre in comparison with European nettle (Urtica dioica L.) fibre. Mater. Lett. 181, 200–203. doi: 10.1016/j.matlet.2016.06.044] DOI: https://doi.org/10.1016/j.matlet.2016.06.044
Bourgeois, C., Leclerc, É. A., Corbin, C., Doussot, J., Serrano, V., Vanier, J. R., et al. (2016). L'ortie (Urtica dioica L.), une source de produits antioxidants et phytochimiques anti-âge pour des applications en cosmétique. Comptes Rendus Chim. 19, 1090–1100. doi: 10.1016/j.crci.2016.03.019 DOI: https://doi.org/10.1016/j.crci.2016.03.019
Mortazavi, S. M., and Moghaddam, M. K. (2010). An analysis of structure and properties of a natural cellulosic fiber (Leafiran). Fibers Polym. 11, 877–882. doi: 10.1007/s12221-010-0877-z DOI: https://doi.org/10.1007/s12221-010-0877-z
Todkar, S. S., and Patil, S. A. (2019). Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Compos. Part B Eng. 2019:106927. doi: 10.1016/j.compositesb.2019.106927 DOI: https://doi.org/10.1016/j.compositesb.2019.106927
Laftah, W. A., and Abdul Rahaman, W. A. W. (2015). Chemical pulping of waste pineapple leaves fiber for kraft paper production. J. Mater. Res. Technol. 4, 254–261. doi: 10.1016/j.jmrt.2014.12.006 DOI: https://doi.org/10.1016/j.jmrt.2014.12.006
Naveen, J., Jawaid, M., Amuthakkannan, P., and Chandrasekar, M. (2018). “Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites,” in Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, eds M. Jawaid, M. Thariq, and N. Saba (Woodhead Publishing), 427–440. doi: 10.1016/B978-0-08-102292-4.00021- DOI: https://doi.org/10.1016/B978-0-08-102292-4.00021-7
Devaraju, A., and Harikumar, R. (2019). “Life cycle assessment of sisal fiber,” in Reference Module in Materials Science and Materials Engineering (Elsevier Ltd.). doi: 10.1016/B978-0-12-803581-8.10552-1] DOI: https://doi.org/10.1016/B978-0-12-803581-8.10552-1
Aslan, M., Tufan, M., and Küçükömeroglu, T. (2018). Tribological and mechanical performance of sisal-filled waste carbon and glass fibre hybrid composites. Compos. Part B Eng. 140, 241–249. doi: 10.1016/j.compositesb.2017.12.039 DOI: https://doi.org/10.1016/j.compositesb.2017.12.039
Alotaibi, M. D., Alshammari, B. A., Saba, N., Alothman, O. Y., Sanjay, M. R., Almutairi, Z., et al. (2019). Characterization of natural fiber obtained from different parts of date palm tree (Phoenix dactylifera L.). Int. J. Biol. Macromol. 135, 69–76. doi: 10.1016/j.ijbiomac.2019.05.102 DOI: https://doi.org/10.1016/j.ijbiomac.2019.05.102
Rivera, D., Obón, C., Alcaraz, F., Laguna, E., and Johnson, D. (2019). Date-palm (Phoenix, Arecaceae) iconography in coins from the Mediterranean and West Asia (485 BC−1189 AD). J. Cult. Herit. 37, 199–214. doi: 10.1016/j.culher.2018.10.010 DOI: https://doi.org/10.1016/j.culher.2018.10.010
Masri, T., Ounis, H., Sedira, L., Kaci, A., and Benchabane, A. (2018). Characterization of new composite material based on date palm leaflets and expanded polystyrene wastes. Constr. Build. Mater. 164, 410–418. doi: 10.1016/j.conbuildmat.2017.12.197 DOI: https://doi.org/10.1016/j.conbuildmat.2017.12.197
Arunachalam, V. (2012). Date palm. Genomics Cultiv. Palms, 49–59. doi: 10.1016/B978-0-12-387736-9.00004-2 DOI: https://doi.org/10.1016/B978-0-12-387736-9.00004-2
Elmogahzy, Y., and Farag, R. (2018). “Tensile properties of cotton fibers: importance, research, and limitations”, in Handbook of Properties of Textile and Technical Fibres, ed A. R. Bunsell (Woodhead Publishing), 223–273. doi: 10.1016/B978-0-08-101272-7.00007-9 DOI: https://doi.org/10.1016/B978-0-08-101272-7.00007-9
Colomban, P., and Jauzein, V. (2018). “Silk: fibers, films, and composites-types, processing, structure, and mechanics,” in Handbook of Properties of Textile and Technical Fibres, ed A. R. Bunsell (Woodhead Publishing), 137–183. doi: 10.1016/B978-0-08-101272-7.00005-5 DOI: https://doi.org/10.1016/B978-0-08-101272-7.00005-5
Balaji, V., and Senthil Vadivu, K. (2017). Mechanical characterization of coir fiber and cotton fiber reinforced unsaturated polyester composites for packaging applications mechanical characterization of coir fiber and cotton fiber reinforced. J. Appl. Packag. Res. 9, 12–19.
Danso, H. (2017). Properties of coconut, oil palm and bagasse fibres: as potential building materials. Proc. Eng. 200, 1–9. doi: 10.1016/j.proeng.2017.07.002 DOI: https://doi.org/10.1016/j.proeng.2017.07.002
Pham, L. J. (2016). Coconut (Cocos nucifera). AOCS Press. doi: 10.1016/B978-1-893997-98-1.00009-9 DOI: https://doi.org/10.1016/B978-1-893997-98-1.00009-9
Zheng, Y., Wang, J., Zhu, Y., and Wang, A. (2015). Research and application of kapok fiber as an absorbing material: a mini review. J. Environ. Sci. (China) 27, 21–32. doi: 10.1016/j.jes.2014.09.026 DOI: https://doi.org/10.1016/j.jes.2014.09.026
Wang, G., and Chen, F. (2016). “Development of bamboo fiber-based composites,” in Advanced High Strength Natural Fibre Composites in Construction, ed M. Fan and F. Fu (Elsevier Ltd.), 235–255. doi: 10.1016/B978-0-08-100411-1.00010-8
Wang, G., and Chen, F. (2016). “Development of bamboo fiber-based composites,” in Advanced High Strength Natural Fibre Composites in Construction, ed M. Fan and F. Fu (Elsevier Ltd.), 235–255. doi: 10.1016/B978-0-08-100411-1.00010-8 DOI: https://doi.org/10.1016/B978-0-08-100411-1.00010-8
Van Dam, J. E. G., Elbersen, H. W., and Daza Montaño, C. M. (2018). “Bamboo production for industrial utilization,” in Perennial Grassesfor Bioenergy and Bioproducts, ed E. Alexopoulou (Academic Press; Elsvier), 175–216. doi: 10.1016/B978-0-12-812900-5.00006-0 DOI: https://doi.org/10.1016/B978-0-12-812900-5.00006-0
Zakikhani, P., Zahari, R., Sultan, M. T. H., and Majid, D. L. (2014). Extraction and preparation of bamboo fibre-reinforced composites. Mater. Des. 63, 820–828. doi: 10.1016/j.matdes.2014.06.058 DOI: https://doi.org/10.1016/j.matdes.2014.06.058
Shera, S. S., Kulhar, N., and Banik, R. M. (2019). “Silk and silk fibroin-based biopolymeric composites and their biomedical applications,” in Materials for Biomedical Engineering, eds V. Grumezescu and A. Mihai Grumezescu (Elsvier), 339–374. doi: 10.1016/B978-0-12-816872-1.00012-1. DOI: https://doi.org/10.1016/B978-0-12-816872-1.00012-1
McGregor, B. A. (2018). “Physical, chemical, and tensile properties of cashmere, mohair, alpaca, and other rare animal fibers” in Handbook of Properties of Textile and Technical Fibres, ed A. R. Bunsell (Woodhead Publishing), 105–136. doi: 10.1016/B978-0-08-101272-7.00004-3 DOI: https://doi.org/10.1016/B978-0-08-101272-7.00004-3
O. Faruk, A. K. Bledzki,H.-P.Fink, andM. Sain,(2012) Biocomposites reinforced with natural fibers: 2000–2010,” Progress in Polymer Science, vol. 37, no. 11, pp. 1552–1596. DOI: https://doi.org/10.1016/j.progpolymsci.2012.04.003
Ravi M, Dubey RR, Shome A, et al. (2018) Effect of surface treatment on Natural fibres composite. In: IOP conference series: materials science and engineering, IConMMEE, Moodbidri, Karnataka India, 2–3 March. DOI: https://doi.org/10.1088/1757-899X/376/1/012053
. Karim MA, Zaman I, Rozlan SA, et al.(2017).Structural characterization and mechanical properties of polypropylene reinforced natural fibres. In: Journal of physics: conference series, 2017, p.012035 International Conference on Materials Physics and Mechanics, Langkawi, Malaysia, 22–23 July. DOI: https://doi.org/10.1088/1742-6596/914/1/012035
Manalo AC, Wani E, Zukarnain NA, et al.(2015). Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre–polyester composites. Compos Part B: Eng, 80: 73–83. DOI: https://doi.org/10.1016/j.compositesb.2015.05.033
. Lo´ pez Manchado MA, Arroyo M, Biagiotti J, et al.(2003). Enhancement of mechanical properties and interfacial adhesion of PP/EPDM/flax fibre composites usingmaleic anhydride as a compatibilizer. J Appl Polym Sci 90: 2170–2178
Lo´ pez Manchado MA, Arroyo M, Biagiotti J, et al. Enhancement of mechanical properties and interfacial adhesion of PP/EPDM/flax fibre composites using maleic anhydride as a compatibilizer. J Appl Polym Sci 2003; 90: 2170–2178. DOI: https://doi.org/10.1002/app.12866
Suradi SS, Yunus RM, Beg MD, et al.(2010). Oil palm biofibre reinforced thermoplastic composites-effects of matrix modification on mechanical and thermal properties. J Appl Sci , 10: 3271–3276. DOI: https://doi.org/10.3923/jas.2010.3271.3276
Xie Y, Hill CA, Xiao Z, et al.(2010). Silane coupling agents used for natural fibre/polymer composites: a review. Compos Part A: Appl Sci Manuf . 41: 806–819. DOI: https://doi.org/10.1016/j.compositesa.2010.03.005
. Li X, Tabil LG and Panigrahi S. (2007).Chemical treatments of natural fibre for use in natural fibre-reinforced composites: a review. J Polym Environ , 15: 25–33. DOI: https://doi.org/10.1007/s10924-006-0042-3
Dash BN, Rana AK, Mishra SC, et al. (2000).Novel low-cost jute–polyester composite. II. SEM observation of the fractured surfaces. Polym Plast Technol Eng , 39: 333–350. DOI: https://doi.org/10.1081/PPT-100100033
Arsyad M.(2019). Sodium hydroxide and potassium permanganate treatment on mechanical properties of coconut fibres. Easy Chair. DOI: https://doi.org/10.1088/1757-899X/619/1/012011
Reddy KO, Maheswari CU, Shukla M, et al.(2013).Tensile and structural characterization of alkali treated Borassus fruit fine fibres. Compos Part B: Eng, 44: 433–438. DOI: https://doi.org/10.1016/j.compositesb.2012.04.075
Kabir MM, Wang H, Lau KT, et al. Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B: Eng 2012; 43: DOI: https://doi.org/10.1016/j.compositesb.2012.04.053
–2892.
Thakur, V.K. and Thakur, M.K. (2014) Processing and Characterization of Natural Cellulose Fibers/Thermoset Polymer Composites. Carbohydrate Polymers, 109, 102-117. http://dx.doi.org/10.1016/j.carbpol.2014.03.039 DOI: https://doi.org/10.1016/j.carbpol.2014.03.039
Puglia, D., Bagatti, J. and Kenny, J.M. (2004). A Review on Natural Fibre-Based Composites—Part II: Application of Natural Reinforcements in Composite Materials for Automotive Industry. Journal of Natural Fibres, 1, No. 3 DOI: https://doi.org/10.1300/J395v01n03_03
Koronis, G., Silva, A. and Fontul, M. (2013) Green Composites: A Review of Adequate Materials for Automotive Applications. Composites: Part B, 44, 120-127 DOI: https://doi.org/10.1016/j.compositesb.2012.07.004
Abilash N, Sivapragash M (2013) Environmental benefits of eco- friendly natural fiber reinforced polymeric composite materials. International journal of application or innovation in engineering and
management (IJAIEM) 2(1): 53-59.
Mohammed L, Ansari MNM, Pua G, Jawaid M, Islam MS (2015) A Review
on Natural Fiber Reinforced Polymer Composite and Its Applications.
International Journal of Polymer Science, pp. 1-15.
Kozłowski RM. (2012). Handbook of Natural Fibres: Processing and Applications. Woodhead Publishing Limited. p. 221 DOI: https://doi.org/10.1533/9780857095510
Holbery J, Houston D. (2006). Natural-fiber-reinforced polymer composites in automotive applications. Journal of Mineral, Metals and Material Society, 58(11):80-86 DOI: https://doi.org/10.1007/s11837-006-0234-2
Ali LMA, Ansari MNM, Pua G, Jawaid M, Islam MS. A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science. 2015:1-15 DOI: https://doi.org/10.1155/2015/243947
Chensong D, Davies IJ.(2011) Flexural properties of wheat straw reinforced polyester composites. American Journal of Materials Science.1(2):71-75 DOI: https://doi.org/10.5923/j.materials.20110102.11
.Weyenberg VDI, Ivens J, De Coster DA, Kino B, Baetens E, Verpoest I. Influence of processing and chemical treatment of flax fibres on their composites. Composites Science and Technology. 2003;63(9):1241-1246 DOI: https://doi.org/10.1016/S0266-3538(03)00093-9
Dandin SB, Kumar SN.(2007). Bio-medical uses of silk and its derivatives. Indian Silk.45(9):5-8
Wang Y, Blasioli DJ, Kim HJ, Kim HS, Kaplan DL.(2006). Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials.27(25):4434-4442 DOI: https://doi.org/10.1016/j.biomaterials.2006.03.050
Meinel L, Betz O, Fajardo R, Hofmann S, Nazarian A (2008) Cory E, et al. Silk based biomaterials to heal critical sized femur defects. Bone. 39(4):922-931 DOI: https://doi.org/10.1016/j.bone.2006.04.019
Pravin VD, Viveka DM.(2015). Natural fiber reinforced building materials. Journal of Mechanical and Civil Engineering. 12(3):104-10