Difficulties of Explorationests in decision making under complex constraints of Technical/Economical and Geopolitical environment of risk and uncertainties

Shallal N. M. Aldelaimi
AL-Farabi University College, Baghdad, Iraq
Ministry of Higher Education and Scientific Research, Baghdad, Iraq
Aldelaimi.shallal@yahoo.com

Abstract: The ultimate objective of Explorationests and managerial head posts is to make the right decision of exploration and development plans under Technical (Engineering), Economic and Geopolitical major environments. This decision must respond positively to the target of exaggerating the national reserve necessities and to replace that depleted or about depleted reservoirs or fields with the best efficiency. Thus, The task of a decision maker is in the beginning to evaluate the situation of the problem he has, where certainly falls in one or more of four cases: 1) Certain deterministic consequences 2) Risky of probabilistic consequences 3) Uncertainty of unknown consequence and 4) Conflict of consequences influenced by opponents. Explorationests or manager deeply has to deal with enormous numbers of unknown variables or parameters as more complex situations by more components of risk and uncertainties, particularly the 2nd and the 3rd categories. In both cases Explorationests must develop a criterion like reserve, profits as related to his objective, then applying either a simulation method or analytical approach to reduce the level of probabilities. The probability can be defined by what is called the Expected Value concept, which for Net Present value becomes (ENPV), which in turn could be either: An event, where a product to be obtained by multiplying the occurrence(frequency) as an outcome by the condition worth value, or: As Decision Alternative, where the probability outcome that could occur, if the decision alternative is occurred. This definition hence, is the most important tool in decision making, while the most popular simulation technique to reduce probability level is what defined as Monte Carlo simulation. It tried to apply it in this work for the western flank of the Mesopotamia, where many exploratory targets of unknown variables assumed to deal with the concept of expected value EV as: a) joint, mutual exclusives probabilistic formula P(total)=P(Tech)+P(Eco)+P(Geopol), and, or: As similar case, but as a decision making alternatives, P(total)=Sum{P(Tech)+P(Eco)+P(Geopol)}. Results of this preliminary study are promising targets, but risky to some extent, thus it seems better to explore this major target, but not to develop it, at least now.

Keywords: Petroleum Exploration, Oil Exploration Constraints, Risk and Uncertainty Evaluation.
1. Introduction

a. Iraq is one of the main producers of hydrocarbons and for exploration, it is a promising country.

b. Different trends of comprehension of the constraint of risk and uncertainty in the exploration stage.

c. Importance of H-C treasure to Iraqi people and country (Geostrategic and geopolitics) is so great.

d. Exploration quality depends on types and needs.

e. Continuity of exploration (geostructural and stratigraphic) is so necessary.

f. Global new era of H-C needs, style, and consumption (Near a new energy break through).

Note: All coming data are from published literature, personal experience and assumptions.

g. A question may rise, if is still there a new era for Iraqi energy sector

2. Petroleum geology of Iraq:

A. the 3-Tectonic plates are influencing the geologic folding and tectonic activity of Iraq

- Iranian (Zagros) plate
- Arabian plate
- Anadol (Turkish) plate

B. Geology, geophysics and petroleum engineering / drilling / logging / testing, evaluation and production are in successive steps and highly sensitive to technology advancements.

C. It is not easy to insure H-C prospect, thus better to have the good management approach and tool, all view is expressed in figs (1, 2, 3 & 4) concerning geologic map, x-sectional view, fields, reservoirs layers.

D. En their deep western side of the Mesopotamia, difficult to find giant fields for many geologic limitations don’t: trapping, facies, depth, age, unconformities, folding, faulting, source rocks, graben, sand stone and migration.

E. Structural and stratigraphic traps, complex migration.

F. Prospect, reservoirs, reserve, grading by volume, by H-C quality by drive, porosity and permeability.

G. Exploration ways: Surface geology / Subsurface and Remote exploration (fig.5),

H. This paper assumed two areal zones for fields distribution: the first is what called Algaziera, between Alfurat river and Tigress river and the second is the desert to the west of Alfurat river.

3: Fields and reserve considered:

More than 500 hundreds stromal traps are distributed over the map of Iraq, but we are considering only the western flank of Euphrates river or desert flank, which includes tens of fields, but we considered again only few of them to simplify the qualitative descriptive exercise(figs 3 and 4).
4. Explorationists and his responsibility in decision making:

- Proposing and choosing geological, geophysical and remote technologies.
- Finding Prospects
- Reserve evaluation

- (No fixed terminology agreement but Petroleum Resources Management terminology SPE, AAPG & WPC @2007, has introduced the P-coding system (or 1P, 2P & 3P classification) as follows:

1) Proved (90% probable recovery) certain, actual recovery probability P ≥ 1.0 P).

2) Probable (recovery probability 50% of 2+3) Risky Actual Recovery ≥ 2P

3) Possible (10% Recovery probability of 1+2) Uncertain (RP ≥ 3P) Scared

Explorationists responsibility comes from the importance of his role in risk and/or uncertainty evaluation and by reducing its level down to classical probability.

- Open nature of exploration
 a. Classical probability → Use close system or well defined event.
 b. Event probability → Frequency of Occurrence
 c. Subjective probability → Experience & Efficiency.

- Also, formulation probabilities:

- Knowledge of all analysis approaches:
 a. Quantitative, Qualitative and sensed.
6A - Before formulations of the model, better to detail in constraints of each one of the 3-main groups of constraints.

a. **Direct volume of treasure** \(N_p = \text{Billion bbl} / \text{Area} \) are: Porosity \(\Phi \), reservoir thickness \(h \), Oil saturation \(S_o = 1 - SW \), Recovery factor \(R_f = \text{fraction} \) and shrinkage factor \(\frac{1}{B_o} = \text{fraction} \).

b. We note that the volume can be expressed indirectly as a fraction or certain volume per well or per field e.g.: through the frequency distribution and cumulative frequency for each constraint or factor.

c. **Probability fraction of economic factors** are: reserve estimations, price, geologic and geophysical, lease cost, appraisal well drilling, production depletion cost, tax position and other sub factors.

b. **We note that all those factors can be expressed influence by a fraction of cumulative frequency.**

c. **Geopolitical factors** : Also they can be expressed as fractions, according to their sub factors influences (via cumulative frequency), some of them are: demand & supply; crises, clean energy evolution, evolution of world overall demand, USA strategic storage, Basins Depletions, Oil Petroleum Exporting Countries (OPEC) and others.

We note here that any of these factors can be treated as individual factors or as collected in one single factor, which is marked here as the price (in both cases as a fraction value on the probability departing from the corresponding S-shape curve).

6B – Now for reducing the level of uncertainty applying probability terminologies, grades level and rules, it needs to use Monte Carlo simulation tool to evaluate each sub factor in direct value of influence by a fraction of assigned confidential value for example.

a. **For applying the Monte Carlo approach we need to construct the S-shape curve or based on the standard deviation concept or**
applying frequency variation for each variable (frequency cumulative curve).

b. It is based on choosing random value from random number table for hand calculate or choose computer no generator to select cumulative frequency (for computer user) then to use it on S-curve to set in associated fraction of volume or frequency of occurrence.

c. For each experiment we select the value for each independent variable in case of technical \(P(T) \), or economical \(P(E) \) and geopolitical or prices \(P(P) \).

6C – Applying probability rules on proposed model Of the triple component \(P(T) \), \(P(E) \) and \(P(P) \).

1. \(P(TEP) = P(T) \cdot P(E) \cdot P(P) \)

As for each probability Event a single value – Law of multiplication.

2. \(P(TEP) = P(T+E+P) \) as alternative decision making probability-Law of adding...

3. For More conditional rules of application for independent factors and non-independent (Joint) conditional event relationships can be summarized as follows :

*We note here that we can work on single compound by neglecting any term of them – also we mention here, we neglect the baye’s formula for simplicity, also that formulation as for decision alternative making

7. Preliminary exercise of application:

For a practice example it was noted that we need to construct the frequency distribution of all assumed playing factors or even to start from some or sub factors. But in our case we start from the main factors of reserve, economy and prices of H-C expected. For reason of limitation of data, we did a lot of assumptions for example we assumed that number of fields under consideration are about 50 fields or reservoirs along the two proposed zones of the western flank of Iraq. We propose they can be subdivided in about 10 categories or groups classified as: Null, very poor, poor, fair, very faire, good, very good, giant, super giant, according to other sub factors of field size, closure, petroleum quality and so on.

Case 6d: What type of fraction of distribution can be used to represent 50% of the occurrence of the influence?

If either treated as event valued variable or alternative choice of decision making. Values for the mean of the major triple factor function fraction.

Is it the mean value? Is it the weighted average? Or other assigned average? Nothing that successive factor influence is conserved as cumulative range level on the abscissa, while the cumulative frequency (factor of participation) is to be represented on the coordinate as well.

8. Results and Advices:

a-We can confirm that the Iraqi western deserts are of frontier stage & still in need for extended deep exploration efforts, although geologic

<table>
<thead>
<tr>
<th>Event</th>
<th>Mutually Exclusive</th>
<th>Nonmutually exclusive</th>
<th>Mutually exclusive or Non-mutually exclusive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(P(T))</td>
<td>(P(E))</td>
<td>(P(P))</td>
</tr>
<tr>
<td></td>
<td>(P(TEP))</td>
<td>(P(TEP))</td>
<td>(P(TEP))</td>
</tr>
<tr>
<td></td>
<td>(P(T)+P(E)+P(P))</td>
<td>(P(T)+P(E)+P(P))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(P(T)*P(E)*P(P))</td>
<td>(P(T)*P(E)*P(P))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(P(T)*P(E)*P(P))</td>
<td>(P(T)*P(E)*P(P))</td>
<td></td>
</tr>
</tbody>
</table>

P(\(T+E+P \))

Nonmutually exclusive
\(P(TEP)=P(T)+P(E)+P(P)-P(T)*P(E)*P(P) \)

P(\(T+E+P \)) low of addition
\(P(TEP)=P(T)+P(E)+P(P) \)

P(\(T+E+P \)) low of multiplication
\(P(TEP)=P(T)+P(E)+P(P) \)

P(\(T+E+P \)) low of addition
\(P(TEP)=P(T)+P(E)+P(P) \)

P(\(T+E+P \)) low of multiplication
\(P(TEP)=P(T)+P(E)+P(P) \)

P(\(T+E+P \)) low of addition
\(P(TEP)=P(T)+P(E)+P(P) \)

P(\(T+E+P \)) low of multiplication
\(P(TEP)=P(T)+P(E)+P(P) \)

P(\(T+E+P \)) low of addition
\(P(TEP)=P(T)+P(E)+P(P) \)

P(\(T+E+P \)) low of multiplication
\(P(TEP)=P(T)+P(E)+P(P) \)
exploration, drilled wells and surficial seepages were not encouraging.

b-Lack of information is a problem (at least to this paper), except little publications, here and there, which affect the accuracy of analysis either for estimation or calculations.

c-Western desert exploration is needed urgently, particularly in Neogene subsidence.

d-We still say that, using new technologies after a century of old development is becoming more than necessary.

e-The new model is one more as a predictive model, with triple constraints; its accuracy is a function of quality of data, All these models are

f-The model is elementary and still under development, It was introduced as part of new outlook to the reservoirs management since 2009.

g-Carbonates, and Sandstones structural reservoirs from Miocene to Triassic, from north to south of Iraq had been well exploited, but those of stratigraphic prospects, are not yet, thus they have to be put under consideration.

h-Supposed reservoirs and fields under consideration.

9. References:

